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In this paper we investigate conditions under which approximation to con
tinuous functions on [-1, 1] by series of Chebyshev polynomials is superior
to approximation by other ultraspherical orthogonal expansions. In particular
we derive conditions on the Chebyshev coefficients which guarantee that the
Chebyshev expansion of the corresponding functions converges more rapidly
than expansions in Legendre polynomials or Chebyshev polynomials of the
second kind.

1. INTRODUCTION

In this paper we shall be concerned with approximating functions, with
certain smoothness properties, by expansions in terms of orthogonal
polynomials. We shall carry out the approximation on the closed interval
[-1, 1] using the supremum norm 1III1 = max",,,[_l.l] [jex)i, and our most
common choice of orthogonal polynomials on this interval will be· the
ultraspherical polynomials C~cd(x) (0: > -t) satisfying

r (1 - t 2),X-1/2 c~a)(t) C;:)(t) dt = 0
-1

(m # n).

The Chebyshev polynomials, which are members of this class eo: = 0),
are widely used in numerical analysis. One of their virtues is that expansions
of functions in series of Chebyshev polynomials are thought to converge
more rapidly than expansions in series of other orthogonal polynomials.
Indeed, Lanczos [5] suggested that the terms of the Chebyshev expansion
were asymptotically smaller in maximum absolute value than the corre
sponding terms of any other ultraspherical expansion. His argument con
tained a major weakness which was rectified by Handscomb [4]. Let the
function I have the two (formal) expansions

f(x) = f a~;)C~"\x) = f a~o)Tn(x),
n~O n~O
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where the Tn are the Chebyshev polynomials. Define

I[ a(~) [1M = I: I a~~) I·
n~M

Handscomb [4] shows, among other results, that for (X > 0

II a(~) 11M ~ II a(O) 11M.

(The normalization of the polynomials used in the proof is c~a)(l) = 1,
TnCl) = 1). Handscomb concludes his paper with a conjecture that no
function exists whose ultraspherical terms are smaller than the Chebyshev
terms in the context described above.

A slightly different approach was adopted by Rivlin and Wilson [7].
They showed that if

f(x) = f a~)CnCx)
n=O

and
co

L I a~) 1< 00,
n=O

where c;,a)(l) = 1, then either of the conditions

(i) a~a) ~ 0 for n > m,
(ii) (_1)n a~~) ~ 0 for n > m,

is sufficient for

Ilf- I a~~)C~~) II ~ Ilf- I a~~l)C~~l) II
n~O n~O

for all (Xl ~ ex ~ o. Several special functions (e.g., f(x) = ex} have a~O) ~ 0
for all n ~ 0, and the theorem of Rivlin and Wilson can be applied imme
diately to such functions giving

IiJ- I a~O)Tn II ~ Ilf- I a~~)c~a) II
11=0 11=0 I

for all ex ~ 0 and m ~ o. Their paper also contains results in a similar vein
for Jacobi polynomials.

Fox and Parker [3] point out that if the Chebyshev coefficients a~) decrease
rapidly, then truncation of the series after M terms will give a very close
approximation to the minimax polynomial (the minimax polynomial is the
best approximation to the function in the supremum norm by polynomials
of degree at most Jl). This statement rests on the fact that the Chebyshev
polynomials have the equioscilIation behavior required of a minimax
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approximation, so that whenever f is a polynomial of degree M + 1 or less,
then

II

lvf ,

f - .to a~O)Tn II = m~n lif - P ii,

where P is any polynomial of degree M.
The purpose of this paper is to compare the performance of ultraspherical

approximations for varying ex, using the above property of the Chebyshev
polynomials as motivation for showing their superior performance. The
approach adopted will be both analytical and computational.

2. GENERAL THEORY

We begin the analysis in a general setting. Suppose {Pn} is a sequence of
polynomials on '[-1, I] satisfying

(i) .on is of strict degree n,

(ii) p" is even or odd in correspondence with the parity of n,

(iii) P.on II = 1.

Property (ii) allows us to write .on = L~~o ,\~n)CL~l, where Aj;') E R, and
A~") = 0 if k + n is odd. By redefining the sequence {Pn} with opposite signs
if necessary we can also assume that A;;') > O. We will further assume that
u. > 0, and II c~a) II = c.~a)(l) = 1, and can now derive the following
theorem:

THEOREM 2.1. Letf, belonging to C[-1, 1], haL'e the uniformly cOI11'ergent
expansionf = L:~o b"Pn' Then a sufficient condition for

for a fixed !'vI :?" 0 is

< ' b I (,(M+l) 1)' I b I (,(M+2) 1\
.~: M+l I\M+l - + 1\1+2 I\M-+-2 - }.

Proof It will be convenient to recall that the operator LM ": C[--1, 1] ->

Pd-l, 1] given by
M

L~)f= I an(cx)C"a
n=O
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is a bounded, linear, idempotent operator. Now

Moon
f - L bnPn = L bnPn = L bn L A~n)da),

n=O .,~M+l n~M+l k~O

and

M M (M)f - ~O a.,(ex) C~~) = f - L<:)I = I - ~O bnPn - L<j} I - '~O bnPn

since LM~ is idempotent.
Hence

M 00 00

1- L an(ex) C~~) = L bnPn - L bnL<:;Pn
n~O n=M+l n=M+l

i = 1,2

we have

00

" ( ) c(a) b \ (M+1)C(O:) + b \ (M+2)C(O:) + R
L. an ex n = M+lI\M+l M+l M+2I\M+2 M+2 M+3 .

11=M+l

Now for III - L~~o bnPn II ~ III - L~o an(ex) cAo:) II we must have

II f bnPn II ~ II bM+1A~il)C~~l + bM+2A~~t2)C<:;+2 + R M+3 [I .
.,~M+l

In view of the fact that the C~o:) also satisfy condition (ii), we may obtain the
following inequality which is sufficient for the one above:

II f bnPn II ~ I bM+1 [ A~il) + I bM+21 A~~"22) - [I RM+3 [I·
n=M+l
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The sufficient condition in the theorem is obtained by replacing iI RM +S Ii
by the upper bound

and using

II f bnPn il ~ I bM+l ! + IbM+2 1 + I :bn I·
n=A-f+l 11=A1+3

The theorem as such has two significant drawbacks, since two different
circumstances can give rise to the theorem failing outright. First, the sum
on the left-hand side of the inequality may not converge. Second, even though
the left-hand sum may converge, the right-hand side could be negative if
NM+I) or )..(M+2) are less than unity However suppose we repl~ce the P "hy11-1+1 M+2 ., a n u

the Chebyshev polynomials Tn. Then it is well known that of all polynomials
of degree n with unit norm on [-1, 1], the Chebyshev polynomial has the
largest coefficient of x". Hence in this case )..i~ll), '\}.1t.22 > 1, and the
right-hand side is always nonnegative.

EXAMPLE 1. Take the following definitions for Pn and (](;

Pn = Til, the Chebyshev polynomials of the first kind,

1 . (I). U,,(x) sin(n + 1)8
ex = 1. so that en (x) = -+1 = ( -+ l' . e' x = cos e.

11 Jl.J sm

These are the Chebyshev polynomials of the second kind.
In this case we have

T = (n + 1) ell) _ (/1 - 1) e(I)
n 2 To 2 n-2

giving the ,\rn of Theorem 2.1 a particularly simple form. Hence a sufficient
condition for

is

'" (M - 1) M,
L. . I bn I ~ 4 1bM+l 1+ 41 bM +2 I·

,,~M+3

Observe that this condition contains no reference to the coefficients in the
Un-expansion, and so a given Chebyshev series can easily be tested numerically
to see whether it satisfies the condition.
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EXAMPLE II. For our second example, we let Pn = Tn and restrict ex to
lie in (0, 1). We have the following information about the ,\Ln) in this case:

LEMMA 2.2. Let Tn = lLo I\~n)c~',) for 0 < ex < 1. Then

for 0 < k < 11.

Proof Details may be found in [6].
These facts help us to deal with the term

M

Ibn [ Ii Tn - I '\kn)d~) II,
n~M+3 I..~O

for

for all 11 > M,

i = 1,2,

M

= Tn(l) + I 1,\L") I d~\l),
k~O

since C1n
) attains its norm at x = 1. Now using the fact that the ,\1n

) are
decreasing in modulus we have

00

RM +3 ~ 1 + max{A M +3 ,AMH} I I bn I,
..~M+3

where An = L~o I ,\i.n) I·
The sufficient condition of Theorem 2.1 now becomes

This condition degenerates into the condition for Chebyshev polynomials
of the second kind as cx ---* I, since A M +3 , A"H4 ---* 0 as ex ---+ 1. Defining

,(M+i) I
Q(") _ /\M+;-

M+i - 2 + max{A M +3 , A MH} ,

we have

I 1bn 1~ QhlH 1bMH 1+ Q~+21 bM +2 1.
n~M+3

Table I at the end of this paper gives values of Qt~i for varying values of M
and ex. As in Example I the Q.bll , Q.l1l2 increase with M, for fixed ex between
zero and one.
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TABLE I

0; = 0.2 a = 0.4 a = 0.6 '" = 0.8 ex = 1.0

M QM+l QM+2 QM+1 QMH QM+l QMH QM+l QM+2 QM+l QMH

2 0.126 0.163 0.225 0.305 0.314 0.443 0.404 0.588 0.500 0,750

3 0.160 0.190 0.296 0.362 0.428 0.541 0.574 0.746 0.760 LOOO

4 0.187 0.211 0.353 0.410 0.525 0.627 0.728 0.890 1.000 l.25C

5 0.208 0.229 0.400 0.451 0.608 0.701 0.869 1.230 1.250 L50C
10 0.279 0.291 0.562 0.594 0.907 0.972 1.433 1.556 2.500 2.750

15 0.321 0.330 0.659 0.684 1.098 1.149 1.840 1.945 3.750 4.000

18 0.34! 0.348 0.703 0.725 1.185 1.231 2.037 2.133 4.500 4.750

3. ULTRASPHERICAL RESULTS FOR LARGE IiI

In this section we compare the performance of a general ultraspherical
expansion for u: > 0, with that of a Chebyshev series. We cannot expect the
Chebyshev series to perform better for every function in C[-1, 1] and fOe
every M. Indeed, iff is defined on [-1, 1] by

4

f = L anTn - T5 - T6 -+ 7T7 ,

n=O

then the Chebyshev expansion of the second kind of degree four is a better
approximation to fthan the expansion of the first kind, with the same degree.
In fact

7

L anTn = - T5 - T6 + 7T7 '

rl=5

7

L bnUn = -4U5 - tU6 + fU7
n=5

= -24C~1) - tC~l) + 28C?> = I 5"C;>,
n=5

where C~l) = Un!11 Un II = Un! Un(1).
Note that although Handscomb's result holds (as indeed it must) quite

strongly, namely:

7 7

L I an ! = 9 < 55.5 = L I bn 10
3 5
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This does not imply 111 - L~=O anTn II < III - L~=o bnUn II. In fact, using
a numerical maximization technique we have

4 4III- L anTn II = 8.14 > 7.89 = JI! - L bnUn II·
n~ n~

However, as the expansions are truncated after higher order terms (specifically
after T5) we can use the theorem of Rivlin and Wilson [7] to show that

M MIII- L anTn II ~ III- L bnUn II,
n=O n=O

M= 5,6,....

From this, and other similar examples we formulate:

Conjecture. Suppose 1= L:=O anTn = 2,:=0 b~a)ci:), where both these
expansions are uniformly convergent on [-1, 1]. Then there exists Mo such
that

M M,

II!- L anTn II ~ JI!- L b;a)C~~) II
n=O n=O

for all M > Mo .

In a limited set of circumstances we can verify this conjecture. From
Abramowitz and Stegun [1] we have

for a> -to

In this relation we can establish

LEMMA 3.1. IfC!;) = p,~n)c~a+l) - P,~2C~~1) and ex ): 0, then p,<;:) ~ 00

as n --+ 00.

Proof From [1], recalling the difference in normalization, we have

p,~n) = a (n + 2
n
a + 1) (n + a)-l [(n + ~: - 1)r1

= (n + 2a + 1)(n + 2a).

THEOREM 3.2. Suppose I has the uniformly convergent expansion f =
2,:=0 a~n)C;,n). Further, suppose there exists K > °and M o such that

I a<:J+l I + I a<:J+2 I > K i: I a~) I
n=M+3

Then there exists !vII such that

M MIlf- L a~)C~") II ~ III- L a~"+l)d~+l) II
n=O n=O

for all M > M o .

for all M > M I •
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Proof Using Theorem 2.1 a sufficient condition for

2 I ! a~') I ~ Ia<t!+l I (fL~~~l) ~ 1) --;- i a~~~2 i (,u~~~';2) - 1).
il=M-;-3

Since u lM+l
) n lM+2) -+ 00 as n -+ 00 then thero exists 'vI such that, M+l , r~..!W+2 ,""'.1 1

J21

(M+l) 1 2
fLM+l - > K

for all l~f > M l . This gives

and (.H+2) _ 1 2
fLM+2 > K

CfO·

2 I I a~,) I ~ I a~~+1 I (fL~~~~l) - 1) + :a~:)+21 (fL};~"22) - I)
n=M+3

for M > AIl, which is sufficient to establish the theorem. A similar theorem
can be deduced from Example II of Section 2. Using the notation adopted
there, we can establish

THEOREl'vI 3.3. Let f have the Cheb.vshev expansion L bnTn where
L I bn I < 00. Suppose further there exist K > 0 and Mo such that

oc·

! bM +! 1 + I bM +2 [ > K I Ibn!
n~M+3

Then there exists M l such that

where 0 < (X ~ 1.

for all AI > l'vffJ •

for all M > M 1 ,

Proof As in Theorem 3.2 we shall suppose that L~=o a~a)C;t) is uniformly
convergent. In this case a sufficient condition for

is

'" I b I --- Q(d I b ; + Q(~) I' iL,n ~ .l\If+1 M+l: AI--2 : Dllr/+2 h
"~M+3

where Q<.;)+i is defined in Section 2, for i = 1,2. If we can show that
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Q~]+i -- 00 as M -- 00 for i = 1,2, then the same argument applied in
Theorem 3.2 will yield the desired result. Q~+i is a quotient, the denominator
being

2 + max{A"'f+3 , AM +4}'

Now AM +3 = L~=o I A):'H3l I, and the AY:) are continuous functions of tX for
o~ tX ~ 1 with A~n(tX) ~ O. Hence A M +3 = A,vf+3(tX), a continuous function
of tX with A M+3(0) = AM+3(1) = O. Since [0, 1] is compact there exists R
such that I A M +3(ex) [ ~ R for 0 ~ tX ~ 1. The same argument shows that
AM+4 is bounded in this range, and hence the denominator of Q~;~l is bounded
for i = 1,2, and 0 ~ tX ~ 1.

The numerator of QAl~l is A~~V) - 1 where

A(M+1) _ (2tX + 1)(2ex + 2) '" (2ex + M - 1)(2tX + M)
M+1 - (ex + l)(cx + 2) ." (ex + M - 1)(1X + M)

reM + 2ex + 1) r(ex + 2) re2ex + 1)
reM + ex + 1) F(2ex + 2) niX + 1) ,

and from the properties of these gamma functions we have ,\~~il) __ 00

(where tX remains fixed throughout). Similarly A~~~"22) -+ 00 and so QAl~i -~ 00

as M -- 00 for i = 1,2 and 0 ~ ex :« 1.
We now indicate what degree of smoothness is sufficient to give a result

similar to Theorem 3.3 for more general values of ex > O. Our smoothness
condition will take the form of a restriction on the behavior of the Chebyshev
coefficients, and provides one example of the type of condition which will
suffice.

LEMMA 3.4. Letfhave the Chebyshev expansionf= 'i.anTn on [-1,1],
where 2n I an I -- A as n -+ 00. Then there exists K(ex) E R, K> 0 such that

I a<f!+l I + I a<f!+2 I > K(tX) f I a~) I .
n=M+3

wheref = L a.l;)C~~) and tX = 0, 1,2,3,....

for all M > M., > 0,

Proof The case rx = 0 is the Chebyshev case and so the result follows
in this case from the assumption on the behavior of the an = a.;~) as n gets
large. We now assert that 2n I a~~l I/n~ -+ B, where B is a constant inde
pendent of n. This can be established by induction, the inductive step from ex
to ex + 1 being as follows: there exists N = N(cx) > 0 such that

I a~~+1) 1= (n + 2ex + l)(n + 2ex) I a<;) I _ (n + 2)(n + 1) I a~~2 I
2(2ex + l)(n + ex) 2(20: + l)(n + 0: + 2)

for n ~ N.
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[
4(11 - LJ: " 1)(n + 2ex)(n + ex + 2) . n'" - (n + 2)(n + 1)(11 + ex)(n + 2)"'l

X (11 + ex)(/1 + LX + 2) J
3B

as 11 ----+ co.

We start the inductive process from LX = 0, where we know the i"esult to hold.
We now establish the assertion of the lemma. For any given ex E lI/~ we can
find N(::x) such that

Hence

( ) 2Bn"-
I a,,"- I .. 11< "2"lor a n > N«x).

I a~"') I < 2B

2BlvIa "', ex" lltfa-r 00 p'"
~ 2M+3 + 2B '~1 \ r)~~32T

2BMa 2BM"- '" (Ci") 00 p"
~ 2M+3 +~ I .r! I 21'

T=l 1-1=3

~2BM"-
~ 2M+3 • H,

where H is a constant independent of iVI.
Thus given E > °we can find K(ex) such that

K(:x) I
11=/1..1+3

(M + 2)' + E

2MH

and the proof is complete.

THEOREM 3.5. Let!have the Chebyshev expansionf = L bnTn all [-1, l}
where 2" I b n I ----+ A as n ----+ 00. Given any ex > 0, there exists N(ex) such that,
in the notation of Lemma 3.4,

for ail 1'1,[ > N(ex).

Proof Using Lemma 3.4 and Theorem 3.3 the result holds for 0 < ex ~ 1.
If ex is an integer greater than one, then the result follows from Lemma 3.4
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and Theorem 3.2. If IX is not an integer, then we know from Lemma 3.4 that
there exists K such that

I a~~l I + I a~~2 I > K 2:: I a~~o) I
.,,~M+3

for M > Af~o'

where n:o is the integer part of n:. We will be able to repeat the argument of
Theorem 3.3 in this case if we can show that in the representation1

[n/2]

C(~o) = '\' \ (n)C(~)
11 LJ /\r n.-2t

r~O

the coefficients b~n) satisfy I .\~~t2) I < I A~n) I and .\~n) < 0 for I ::::; r < [nI2].
A formula for the .\~n), due to Gegenbauer and given in [2], is

.\(n) = r(n:)(n - 2r + LX) r(r + n:o - LX) r(n - I' + n:o)

r r(LXo) T(LXO- LX) r(n - r + n: + 1) r!

The fact that .\~n) < 0 for 1 ::::; r ::::; [nI2] follows immediately from the
observation that all the arguments to the gamma functions are positive,
except for T(Cl.o - n:) which is negative for n: E (n:o , n:o + 1). The quotient

I .\(n+1) III .\(n I = .\(n+2)1.\<n) for 1 :< I' :< [nI2] may be evaluated asr+1 r r+1'r "'-""'-"

.\(11+2)
r+1

~r

(r + (Yo - n:)(n - r + n:o)

(r + l)(n - r + (Y + 1)

which is less than unity since 1 ::::; r ::::; [nI2] and 0 < (Y - n:o < 1. Last,
we need to show that .\~") -+ 00 as n -+ 00. The form of .\~n) is

.\(n) _ r(ex)(n + n:) r(n + n:o)
o - r(n:o) r(n + ex + 1)

r(rx) T(1l + lXO)
= -+ 00 as n -+ 00.

r((Yo) r(n + n:)

We now have sufficient information about the .\~n) to ensure that the
arguments used in the proof of Theorem 3.3 may be carried over to the
situation we have here.

4. REMARKS

The Theorem 2.1 is not a particularly deep result, and yet it has yielded
some quite powerful statements in Section three. Although Theorem 3.3

1 Here we have for convenience abandoned temporarily the normalization C~~)(l) = 1
and used instead C~~)(l) = (n+;'~-l).
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does not cover a wide range of values for 0': (in fact, 0 < .:t ~ 1), it does
include the Legendre polynomials and the Chebyshev polynomials of the
second kind. Thus any function whose Chebyshev coefficients satisfy

I bM+l I + I bM+2 I > K I ! bn I
n=M~3

(1)

for all !vI > M o , will have the property that the error in approximating the
function by truncated Legendre expansions or Chebyshev expansions of the
second kind will eventually, for sufficiently large M, have uniform error
greater than that of the Chebyshev expansion with the same number of
terms. The result for general 0': > 0 is harder to obtain since the only possible
approach seems to be that adopted by Lemma 3.4 and Theorem 3.5, where
we ensured that property (l) was inherited by successive ultraspherical
expansions for J: = 1,2,3,.... It is worth noting that Rivlin and Wilson's
result (outlined in Section 1) is a consequence of Handscomb's results in the
case:.: = 0, and both authors in effect exploit the same property of the
ultraspherical polynomials, namely for 0':1 > 01. ~ 0

C(~l) = ~ e(n)C(d
n L r .,.,

"=0

where e~'") ?: O. In order to obtain conditions on the Chebyshev coefficients
we have exploited in this paper the representation of the C~~) in terms of the
C;."l) for 0 ~ r ~ n.

Finally, Lemma 3.4 and Theorem 3.5 are only examples of the type of
result that can be achieved by applying Theorem 2.1. Both of these results
would remain valid if the hypothesis on the Chebyshev coefficients was
replaced by 0 < E < I an I An < A for ,\ > 1.
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